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Honeycomb structures are widely used in structural applications because of their high 
strength per density. Re-entrant honeycomb structures with negative Poisson's ratios may 
be envisaged to have many potential applications. In this study, an homogenization finite 
element method (FEM) technique developed for the analysis of spatially periodic materials is 
applied for the analysis of linear elastic responses of the regular and re-entrant honeycomb 
structures. Young's modulus of the regular honeycomb increased with volume fraction. 
Poisson's ratio of the regular honeycomb structure decreased from unity as volume fraction 
increased. The re-entrant honeycomb structure had a negative Poisson's ratio, its value 
dependent upon the inverted angle of cell ribs. Young's modulus of the re-entrant 
honeycomb structure decreased as the inverted angle of cell ribs increased. The results are 
in good agreement with previous analytical results. This homogenization theory is also 
applicable to three-dimensional foam materials - conventional and re-entrant. 
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Body force 
Young's modulus, elasticity tensor 
Effective Young's modulus 
Homogenized elasticity tensor 
Traction 
Displacement 
Virtual displacement 
Macroscale coordinate 
microscale coordinate 
Microscopic/macroscopic ratio 
Volume fraction 
Poisson's ratio 
Effective Poisson's ratio 
Stress 
Microscale parameter of separation of vari- 
ables 

1 .  I n t r o d u c t i o n  

Cellular materials are multiphase composite material 
systems that consist of a solid matrix and a fluid 
phase, the fluid usually being a gas. Morphologically, 
cellular solids are classified into two-dimensional 
solids such as a honeycomb structure which contains 
hexagonal cells and three-dimensional foams such as 
sponge. These cellular solids are increasingly used 
structurally because of their high strength combined 
with being lightweight. In two-dimensional cellular 
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materials, if the polygon which packs to fill a plane 
area is regular, these materials can be treated as hav- 
ing a special symmetric behaviour in plane, for 
example, transversely isotropic with a regular hexa- 
gon (Fig. 1). 

Poisson's ratio, v, describes a dimensional change in 
lateral direction to longitudinal direction when a force 
is applied in a longitudinal direction. It is possible to 
have materials that become fatter when stretched be- 
cause the positive strain energy theory of isotropic 
elasticity allows Poisson's ratios in the range from 

- 1 to 1/2 [1]. But isotropic materials with negative 
Poisson's ratios have not been reported. Recently, 
isotropic polymer [2] and metallic [3] foams with 
negative Poisson's ratios were developed by a cell 
shape change from a convex polyhedron to a concave 
(i.e. bulges inwards) one. One can easily observe the 
rationale of negative Poisson's ratios: suppose that 
one crumples a plain piece of paper and stretches it 
from opposite corners, then the paper expands 
laterally. In addition to the negative Poisson's ratio, 
this new material showed enhancements in several 
material properties such as impact absorption, dam- 
age resistance, damage tolerance, plane strain fracture 
toughness, resilience, shearing modulus and indenta- 
tion resistance, compared to the conventional foam 
materials with positive Poisson's ratios [2, 3]. 

Meanwhile, the conventional honeycomb structure 
can be fabricated to have a negative Poisson's ratio 
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Figure 1 A conventional honeycomb structure with regular hexa- 
gonal cells; dashed rectangle, repeating unit. 
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Figure 2 A re-entrant honeycomb structure with inverted cells; 
dashed rectangle, repeating unit. 

(Fig. 2). Honeycomb structures with inverted (re- 
entrant) cells have been reported to have negative 
Poisson's ratios in the cell plane [4, 5]. The linear 
elastic response of these honeycomb structures - con- 
ventional and re-entrant - has recently been obtained 
via a structural analysis in repeating volume element 
[6, 7] and a beam analysis of the unit cell [8]. It was 
proposed that effective elastic moduli, effective 
Young's modulus and effective Poisson's ratio, depend 
on the volume fraction, ~, which is the ratio of matrix 
volume to whole volume. The re-entrant honeycomb 
structures with negative Poisson's ratios may be useful 
in many potential applications which take advantage 
of the above enhanced properties. Several anisotropic 
materials are known to have negative Poisson's ratios. 
These include a few natural single crystals [9], some 
composite laminates [-10], microporous polytetra- 
ftuoroethylene (PTFE) [11] and microporous ultra- 
high molecular weight polyethylene [12]. 

FEM has gained in popularity as one of the most 
powerful tools in the area of stress analysis. However, 
a close look at the cellular material microstructure 
reveals that it is extremely difficult to analyse such 
a structure at the level of individual microstructural 

units. Conventional FEM assumes material homogen- 
eity and isotropy, and it is apparent that such assump- 
tions are hardly applicable because of the high degree 
of material heterogeneity. One of the reasonable ways 
to overcome this difficulty is to find an equivalent 
material model without a need to represent every 
individual microstructural unit. 

There have been enormous efforts to compute vari- 
ous effective material properties of composite mater- 
ials, as can be seen in Hashin's survey [13]. Most of 
the methods, however, are hardly applicable, except to 
simple geometries such as the composite sphere as- 
semblage (CSA) and the composite cylinder assem- 
blage (CCA). The homogenization theory, which in- 
troduces asymptotic expansion to standard FEM, 
helps find such a material model for spatially periodic 
materials which is able to characterize the average 
mechanical behaviour as well as represent the effect of 
the material heterogeneities [14, 15]. 

The purpose of this study is to analyse the linear 
elastic response of the conventional and re-entrant 
honeycomb structures by applying an homogeniz- 
ation FEM technique to the honeycomb structures. 
The results of the present study are compared to 
previous analytical results. If this technique does work 
on the two-dimensional cellular solid, honeycomb 
structure, it will be applied to three-dimensional 
foams - conventional and re-entrant - in future work. 

2. Method 
The finite element weak form of the linear elasticity 
problems is given by 

E,j,, ~ ~ d~) = b; v, df~ + t, v, dF (1) 

In homogenization theory, the field variables, includ- 
ing virtual displacements, are expressed as asymptotic 
expansions with respect to the parameter e([el<<l) 
such that 

g = uO (X__) -I- a b/1 (X, ~)  -}- 0 (82) (2) 

l) = V0(X) At- g / ) l  ( ~ , y )  -t- O ( g  2) (3) 

hold, where _y_ = _x/e is the microscale coordinate. The 
gradients of E and s are given by 

V E = ~ u  ~ + a ~ u  ~ + VyE 1 (4) 

V/) = Vx/.) 0 -~ ~Vxl) 1 -}- Vy/) 1 (5) 

Substituting Equations 2 5 into Equation 1 and re- 
arranging gives 

( ~u~ + 8ul']( ~v~ + ~Vl)df~ 
f E,~,kax, ay, Jkaxj ayj/ 

+V x+ V E,,k,e_5 _5 

= fabi(v~ + av;)d~ + frt~(v~ + av~)dF (6) 
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Taking the limit of ~ ~ 0 reduces Equation 6 to 

+ = ~ 1  d~ 

:~ im[ f  blv~176 ] (7' 

Since the virtual displacement v = v ~ + z_v* is arbit- 
rary, it turns out that v ~ and v* are also arbitrary and 
Equation 7 is rewritten as 

Jim 0 Ei'"' \ ax, + ~77yl J ~x, da 

=limIfnbiv~176 (8) 

and 

lim ( Eijkl (alAO a " l ' ~  aVr d n = 0  (9) 

It is readily seen that Equations 8 and 9 are not 
independent, rather they are mutually dependent 
through the term (~u~ + (au~/ey3. 

Considering that the microscale integration can be 
replaced by an averaged value integration for a gen- 
eral Y periodic function do 

limfar (10) 
a ~ 0  -- 

Equations 8 and 9 are now modified to give 

1 (au ~ ~u~av~ 

and 

( ~u~ - - ~ - - d r c l ~ = 0  (12) + 

Considering the linear relationship, the following sep- 
aration of variables is a sufficient condition to satisfy 
Equation 12 

, , au ~ 
u~(x_,y_) = - Zfqty__) ~xq- (13) 

The microscale parameter Z~ ~ is computed by the 
substitution of Equation 13 into Equation 12 

fr(Eijkl  ~ kl\ avl 0 EiJpq Z D \ ) ~yj " * ~u 0 
- -  dr_ ~xl (14) 

Finally, the weak form of macroscale Equation 11 is 
rewritten as 

Ei~k,~Txz~xd~= blv~ t ,v~ (15) 

where the homogenized elasticity tensor E ~ is com- 
puted by 

f y (  ~_ kl\ H 1 E . .  w L p ~ d y  (16) Eijkl = ~ [  Eijkl - -  t3pq ayq J 

Repeating units were chosen from the regular and 
re-entrant honeycomb structures, as can be seen in 
Figs 1 and 2, and the homogenization technique was 
applied to those repeating units to compute the hom- 
ogenized elasticity tensor, E H. In the conventional 
honeycomb, the effect of volume fraction on Young's 
modulus and Poisson's ratio is investigated. In the 
re-entrant honeycomb, the same elastic properties are 
obtained by changing the inverted angle under the 
assumption of initial volume fraction of 0.1. Four 
different Poisson's ratios of 0, 0.1, 0.2 and 0.3 were 
used for the matrix material of the honeycomb struc- 
tures throughout the computations. 

The effective elastic modulus, E~, and Poisson's 
ratio, re, for each case were obtained from the plane 
stress assumption as follows 

El122 0 FEHl11 H 

E 11 E222a 0 
0 H E1212 

I i  e Ve 0 E~ 
2 1 0 

1 - Ve 1 - -  Ve 
0 2 

(17) 

3. Results and discussion 
In the calculations of the effective Young's moduli and 
Poisson's ratios of the conventional and re-entrant 
honeycombs, we have used four different values of 0, 
0.1, 0.2 and 0.3 as Poisson's ratio of the matrix mater- 
ial. The results showed almost the same values within 
0.1% deviation, regardless of Poisson's ratio of the 
matrix material. Thus, it can be said that the linear 
elastic behaviour of honeycomb structures is indepen- 
dent of Poisson's ratio of the matrix material. The 
effective Young's modulus of honeycomb structures is 
linearly dependent upon Young's modulus of the 
matrix material. Since we are going to deal with the 
normalized Young's modulus, which is the ratio of the 
effective Young's modulus of the honeycomb struc- 
tures to Young's modulus of the matrix material, the 
magnitude of Young's modulus of the matrix material 
does not affect the normalized Young's modulus. The 
magnitude is also independent of the effective Pois- 
son's ratio of honeycomb structures. In the following 
discussion, only the results for a Poisson's ratio of 0.3 
for the matrix material are described. 

Fig. 3 shows the comparison of the present result 
with other analytical results in the effective Young's 
modulus of the conventional honeycomb with regular 
hexagons. As mentioned above, Warren and Kraynik 
[6] used a structural analysis in repeating volume 
element and Gibson and Ashby [8] applied a beam- 
bending analysis to a unit cell. Gibson and Ashby's 
result contained only a @ term in its expression. But, 
Warren and Kraynik obtained a polynomial form of 

with d? 3 as the lowest order. Thus, the two analyses 
gave almost the same result at low density and Ee/E 
was proportional to ~3. The effect of higher order 
terms increases at high volume fractions, as Shown in 
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Figure 3 The dependence of the effective Young's modulus on 
volume fraction of the conventional honeycomb structure. (2), War- 
ren and Kraynik [6]; O, Gibson and Ashby [8]; @, present results. 
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Figure 4 Effective Poisson's ratio versus volume fraction of the 
conventional honeycomb structure. �9 Warren and Kraynik [6]; O, 
Gibson and Ashby [8]; @, present results. 

Fig. 3. The result of the present study falls between the 
two analytical results over all volume fractions 
covered. Therefore, it can be said that the homogeniz- 
ation FEM technique works quite well on the two- 
dimensional cellular solid, honeycomb structure. 

Fig. 4 shows the dependence of the effective Pois- 
son's ratio of conventional honeycombs on volume 
fraction. Gibson and Ashby proposed a unit Poisson's 
ratio regardless of volume fraction. However, the pres- 
ent result, as well as Warren and Kraynik's result, 
shows its dependence on the volume fraction: the 
effective Poisson's ratio decreases from unity with 
increasing volume fraction. At low volume fraction, 
where bending is the primary deformation mecha- 
nism, the effective Poisson's ratio of conventional 
honeycombs approaches unity. At higher volume fl'ac- 
tions, however, bending is no longer dominant and 
a considerable amount of axialextension or compres- 
sion of cell ribs Contributes to the deformation in the 
linear elastic region. Thus, the dependence of Pois- 
son's ratio on volume fraction is more probable in 
cellular structures. This is further supported by the 
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Figure 5 The relationship between the effective Young's modulus 
and the inverted angle of cell ribs with an initial volume fraction of 
0.1; dotted line, no data available in the present results. - - ,  
Warren [7]; ~D- present results. 

fact that the effective Poisson's ratio of conventional 
honeycombs approaches that of the matrix material as 
volume fraction approaches unity. The present FEM 
analysis used a plane stress assumption because it is 
physically more reasonable in actual honeycomb 
structures. Warren and Kraynik also adopted a plane 
stress approach. In the present analysis, however, we 
also examined the effect of the plane strain condition 
in honeycomb structures and then obtained the effec- 
tive Poisson's ratio of honeycomb structures decreas- 
ing from 0.5 instead of unity. Under this condition, the 
three-dimensional stress state inside the matrix mater- 
ial prevents honeycomb structures from deforming 
laterally. 

The variation of the effective Young's modulus of 
re-entrant honeycombs with an initial volume frac- 
tion of 0.1, with respect to the inverted angle of cell 
ribs, is described in Fig. 5. The effective Young's 
modulus of the present study for the re-entrant honey- 
comb has a similar tendency to that of Warren [7]. 
Gibson and Ashby treated the honeycomb structure 
orthotropically and obtained Ex, Ey by considering 
the bending of cell ribs only. When 0 = - 30 ~ (regular 
hexagon), Ex was equal to Ey, which resulted in 
a transversely isotropi c structure. This result, unrealis- 
tically, yielded a singular behaviour of Young's 
modulus as 0 approached 0. Ex went to infinity be- 
cause there were no bendable cell ribs at 0 = 0 ~ How- 
ever, Ey decreased with the increase of the inverted 
angle of cell ribs. 

The experimental results of three-dimensional foam 
materials showed that Young's modulus of the con- 
ventional foams was larger than that of the re-entrant 
foams. This does not correlate with Warren's result 
and the present FEM result�9 In the calculation of the 
effective moduli, the same method was applied as used 
by Warren and Kraynik [16] for the analysis of 
a three-dimensional foam, who obtained the effective 
elastic moduli by taking the average over all possible 
orientations. So, the re-entrant honeycomb structure 
has no preferred direction. It is treated as a transverse- 
ly isotropic material, differing from Gibson and 



Ashby's orthotropic approach. The two methods of 
Warren and Kraynik and Gibson and Ashby give the 
same result in the case of the conventional honeycomb 
with regular hexagons. However, the actual re-entrant 
honeycomb structure is not transversely isotropic, i.e. 
we cannot fill a plane isotropically with the re-entrant 
unit cells. Therefore, the present averaging technique 
does not properly account for the anisotropic prop- 
erty of the re-entrant honeycomb structure. As a re- 
sult, it does not give a rigorous result for Young's 
modulus, as well as Poisson's ratio, of the re-entrant 
honeycomb structure. They are just an averaging 
moduli in the plane. Three-dimensional foams can be 
treated with this averaging process because foams 
have all possible orientations of unit cells and behave 
isotropically. 

The second reason is that because of transforming 
from a convex polyhedron to a concave polyhedron in 
experiments for three-dimensional foams, the nodes of 
cell ribs and adjacent areas might have different ma- 
terial properties than those of original cell ribs. The 
change of material properties, of course, depends on 
the characteristics of the matrix materials. For 
example, non-linear elastic material or elasto-plastic 
material will give weaker nodes, which makes it easy 
to rotate cell ribs around the nodes rather than to 
bend cell ribs in the linear elastic region. However, 
a strain hardening material will result in stronger 
nodes. In this case, cell ribs will have almost fixed 
boundary conditions at the deformed nodes, whose 
linear elastic response is mainly composed of bending 
deformations of cell ribs with a shorter moment arm. 
The matrix materials of the three-dimensional foams 
used in experiments [-2, 31 were polyurethane poly- 
mers which were non-linear elastic materials and cop- 
per which was almost an elasto-plastic material. Thus, 
the three-dimensional re-entrant foams might have 
weaker nodes, which resulted in lower Young's 
modulus than that in the conventional foams. 

Fig. 6 shows the relationship between the effective 
Poisson's ratio and the inverted angle of cell ribs. The 
initial volume fraction of the re-entrant honeycomb is 
0.1. The result of present study agrees well with War- 
ren's [71 for the effective Poisson's ratio of the re- 
entrant honeycomb: a negative Poisson's ratio starts 
at 0 = 12.3 ~ But, Gibson and Ashby's result is for vy~, 
the negative ratio of strain in the x direction to that in 
the y direction, and it is slightly different to other 
results, as shown in Fig. 6 (a negative Poisson's ratio 
was expected at 0 = 0~ As in the case of the effective 
Young's modulus, Poisson's ratio v~y, the negative 
ratio of strain in the y direction to that in the x direc- 
tion, goes to infinity as 0 approaches 0, which is 
incorrect. 

Materials with negative Poisson's ratios are a new 
concept and are not, at present, being utilized. How- 
ever, there are many potential applications which take 
advantage of the negative Poisson's ratio itself, or the 
enhanced material properties. One possible applica- 
tion is that of composite sandwich panels. Sandwich 
panels are composed of stiff composite laminate skins 
of C- or glass-reinforced plastic sandwiching a light 
porous material, which may be one of the foams or 
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Figure 6 The relationship between the effective Poisson's ratio and 
the inverted angle of ceil ribs with an initial volume fraction of 0.1; 
dotted line, no data available in the present results. 0 ,  Present 
results. 

honeycomb materials treated in this study. In the 
application of sandwich panels to aircraft bodies and 
wings, car doors and body panels, it should have 
a dome shape. Unfortunately, when a thick panel of 
the core material with a positive Poisson's ratio is 
curved downwards, its natural tendency is to curve up 
in the transverse direction, to form a saddle shape 
(anticlastic curvature). Currently, the only ways of 
making sandwich panels dome shaped are either by 
machining them or by forcing them into shape and 
damaging the core material. By using cores with 
a negative Poisson's ratio, useful dome-shaped sand- 
wich panel (synclastic curvature) can be made easily. 

The results of the present study are in good agree- 
ment with previous analytical results. In the next 
study, this homogenization FEM analysis will be ap- 
plied to three-dimensional foam materials conven- 
tional and re-entrant. 

4. Conclusions 
Based on the present FEM study using an homogeniz- 
ation technique, the following conclusions seem war- 
ranted. Matrix material properties do not significantly 
affect Poisson's ratio of the regular and re-entrant 
honeycomb structure. Young's modulus of the regular 
honeycomb structure increases with volume fraction. 
The regular honeycomb structure has a decreasing 
Poisson's ratio, from unity, with an increasing volume 
fraction. The re-entrant honeycomb structure has 
a negative Poisson's ratio and its value depends on the 
inverted angle of the cell edge. Young's modulus of the 
re-entrant honeycomb structure decreases with an in- 
crease in the inverted angle. 
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